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Trial-to-trial variability in decision making can be caused by variability in information processing as well as by variability in response
caution. In this paper, we study which neural components code for trial-to-trial adjustments in response caution using a new computa-
tional approach that quantifies response caution on a single-trial level. We found that the frontostriatal network updates the amount of
response caution. In particular, when human participants were required to respond quickly, we found a positive correlation between
trial-to-trial fluctuations in response caution and the hemodynamic response in the presupplementary motor area and dorsal anterior
cingulate. In contrast, on trials that required a change from a speeded response mode to a more accurate response mode or vice versa, we
found a positive correlation between response caution and hemodynamic response in the anterior cingulate proper. These results
indicate that for each decision, response caution is set through corticobasal ganglia functioning, but that individual choices differ

according to the mechanisms that trigger changes in response caution.

Introduction

Even in the simplest, controlled environments, human decision
making is profoundly variable. For example, when making a se-
quence of decisions about identical stimuli, the speed of informa-
tion processing commonly fluctuates from one decision to the
next, perhaps due to noise in the perceptual system or shifts in
attention. Another aspect of the decision-making process that
could differ from one decision to the next is the level of response
caution that is exercised by the decision maker, that is, the
amount of information that is required to make the decision. If
response caution is low, a decision is made based on only a lim-
ited amount of information, but when response caution is high,
more information is required before a decision is made. This
trade-off between fast and cautious response modes is commonly
referred to as the speed-accuracy trade-off (SAT) (Wickelgren,
1977; Bogacz et al., 2010). This paper studies the neural dynamics
that relate to fluctuations in response caution from decision to
decision using functional magnetic resonance imaging (fMRI).
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Previous research has shown that frontostriatal networks are
engaged in setting response caution to accommodate a change in
response emphasis (Forstmann et al., 2008, 2010; Ivanoff et al.,
2008; van Veen et al., 2008). In particular, higher activation is
observed in the presupplementary motor area (pre-SMA) when
participants are encouraged to respond quickly than during trials
in which participants are encouraged to respond accurately.

While these studies have elicited the role of pre-SMA in ad-
justing response caution, it is less clear how this process unfolds
on a moment-to-moment basis. However, methods have recently
been developed to study fluctuations in the hemodynamic re-
sponse (HR) on a trial-to-trial basis (Eichele et al., 2008), thereby
providing insights into the dynamics of the role that a given area
has in behavior. Here, we use this method to relate dynamic
changes in the HR to fluctuations in response caution in an SAT
task, with a particular focus on the comparison between trials in
which response caution changes and trials on which response
caution remains in a default state (Fleming et al., 2010).

Although new methods have been developed to examine trial-
to-trial changes in the HR, computational models of different
latent decision processes such as response caution have tradition-
ally collapsed data within each experimental condition, discard-
ing information about trial-to-trial variability (Vickers, 1970;
Ratcliff, 1978; Usher and McClelland, 2001; Palmer et al., 2005;
Brown and Heathcote, 2008; Ratcliff and McKoon, 2008). Thus,
current models of decision making do not provide access to the
trial-to-trial dynamics of latent cognitive processes, because the
models are applied at the level of conditions: decisions within a
condition are almost always treated as statistically identical. To
overcome this limitation, we developed a novel approach to esti-
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mating latent decision-related parameters that we refer to as the
single-trial linear ballistic accumulator (STLBA) model. Using
this method, we probe trial-to-trial fluctuations in decision mak-
ing. This allows us to understand how variability in the HR relates
to the temporal dynamics of response caution.

Materials and Methods

Participants. Seventeen participants (seven female; mean age, 23.1; SD
age, 3.1) gave informed consent before the experiment (the study was
approved by the University of Amsterdam Ethics Committee). Partici-
pants had normal or corrected-to-normal vision, and none of them had
a history of neurological, major medical, or psychiatric disorders. All
participants were right handed, as confirmed by the Edinburgh Inven-
tory (Oldfield, 1971).

Behavioral task. Participants performed a moving dots task, popular in
neuroscience and research with primates (Britten et al., 1992). This task
required participants to decide whether a cloud of dots appears to move
to the left or the right. Out of 120 dots, 60 moved coherently and 60
moved randomly. From one 50 ms frame to the next, the “coherent set”
of 60 dots was moved 1 pixel in the target direction, whereas the remain-
ing “random set” of 60 dots was relocated randomly. On the subsequent
frame, the coherent set and the random set switched roles, such that each
dot was displaced coherently on one frame and displaced randomly on
the next. This scheme ensures that the cloud remains centered, even
though it gives the impression of moving systematically in one direction.
Each dot consisted of three pixels, and the diameter of the entire cloud
circle was 250 pixels. In this circle, pixels were uniformly distributed
(Forstmann et al., 2008, 2010). Participants indicated their response by
pressing one of two spatially compatible buttons with their left or right
index finger. In the SAT blocks, a cue (i.e., “SP” for speed and “AC” for
accuracy) instructed participants to adopt different levels of cautiousness
on a trial-to-trial basis. On SP trials, participants received feedback ac-
cording to their response speed (either “in time” or “too late”), and on
AC trials participants received feedback according to their response
(“correct” or “incorrect”). There were also some blocks in which a per-
ceptual manipulation was included (perception blocks). Because this
manipulation does not relate to the SAT, we do not discuss those data
here.

Timing and scanning procedure of the fMRI experiment. The timing of
the sequence of trials was triggered from the MRI control every 10 s. The
trials started with a variable oversampling interval of 0, 500, 1000, or 1500
ms to obtain an interpolated temporal resolution of 500 ms. During the
variable oversampling interval, a fixation cross was presented. Partici-
pants were asked to maintain fixation. Then a cue was presented in the
middle of the screen for 2000 ms. Cue presentation was followed by a
jittered interval between 0 and 3000 ms in steps of 1000 ms. In the SAT
blocks, the imperative stimulus (i.e., the moving dot pattern) was pre-
sented for 1500 ms and followed by a jittered interval between 200 and
1700 ms in steps of 500 ms, and finally feedback was provided for 350 ms.
On the speed-stress trials, participants were required to respond within
400 ms after stimulus onset. On the accuracy-stressed trials participants
were required to respond within 1000 ms. After the response a jittered
interval between 200 and 1700 ms in steps of 500 ms was introduced,
which was followed by feedback for 350 ms. The experiment consisted of
four blocks with two SAT and two perception blocks, each including 40
trials. The experiment lasted ~45 min. Every block started out with two
dummy trials that were excluded from further analysis.

The fMRI measurements were acquired in a single scanning session on a
3T scanner (Philips). Thirty axial slices were acquired (222 X 222 mm FOV;
96 X 96 in-plane resolution; 3 mm slice thickness; 0.3 mm slice spacing)
parallel to the AC-PC plane and covering the whole brain. We used a single-
shot, gradient-recalled echo planar imaging (EPI) sequence [repetition time
(TR), 2000 ms; echo time (TE), 28 ms; 90° flip angle (FA), transversal orien-
tation]. Before the functional runs, a 3D T1 scan was acquired (T1 TFE; 25 X
25 cm FOV; 256 X 256 in-plane resolution; 182 slices; slice thickness, 1.2
mm; TR, 9.69; TE, 4.6; FA, 8, sagittal orientation).

Single-trial linear ballistic accumulation model. One well-validated and
well-known model of decision making is the linear ballistic accumulator
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(LBA) model (Brown and Heathcote, 2008; see also Forstmann et al.,
2008, 2010; Donkin et al., 2009). The LBA model assumes that each
decision is made by accumulating evidence for the different response
options, with one accumulator for each option (Fig. 1A). During a deci-
sion process, evidence for each option accumulates with a fixed rate (drift
rate v) until a critical value (called the response threshold b) is reached.
To account for the variability in the data, the LBA model assumes that the
drift rates are normally distributed from trial to trial (with different
distributions for the different accumulators). In addition, the LBA model
assumes that the start points of accumulation are drawn from a uniform
distribution. These two sources of variability are sufficient to account for
many benchmark phenomena in decision-making tasks (Brown and
Heathcote, 2008). The LBA model also estimates the time that cannot be
explained by any of the other components (,, commonly referred to as
nondecision time).

In the LBA model, response caution can be quantified by the minimal
difference between the threshold (b) and the start point of accumulation.
Because the start point is drawn from a uniform distribution ranging
from 0 to an upper bound of A, the minimal differenceisb — A. Ifb — A
is small, the accumulator associated with the incorrect response some-
times samples a start point that is close to the threshold. This increases
the probability of selecting the incorrect accumulator, as the role of the
drift rate (sampled form a normal distribution with mean v and variance
s) is relatively small. In contrast, a high response caution (large value for
b — A) ensures that both accumulators begin well below threshold. This
decreases the probability of selecting the incorrect accumulator, but at
the cost of longer overall decision times.

We extend the LBA model to provide estimates of response caution
(and drift rate) for every trial. First, we estimate LBA parameter values for
the full response time (RT) distribution in the usual manner (Donkin et
al., 2009). Next, these LBA parameter values are used to compute the
maximum likelihood values of drift and start point of each trial. Because
the LBA model assumes a normal distribution, drift rates close to the
mean of the distribution are more likely than values from the tails of the
distribution. In addition, the uniform distribution sets limits on start
points (0 and A). These considerations yield the following maximum
likelihood estimates for a single-trial drift rate (d,) and a single-trial start
point (d,), for a trial with response time #;:
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where b, A, v, and t, are the parameters of the LBA model. Parameter
recovery studies show that these estimates recover substantial variance in
the data-generating parameter values for a large range of parameter val-
ues (Fig. 2).

The single-trial extension to the LBA model enables investigation of
the temporal dynamics of response caution. The model attributes vari-
ance in the response times to either strategic adjustments in response
caution (b — 4;) or fluctuations in processing speed ({3,-). Here, we focus
our analysis on strategic adjustments in response caution; the single-trial
drift rates can be used to study fluctuations in processing speed (T. Ho,
S.D. Brown, L. van Maanen, B.U. Forstmann, E.-J. Wagenmakers, and
J.T. Serences, unpublished observations). To indicate which areas in the
brain code for response caution, we correlate single-trial estimates of
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tion. Start points for SIMPLEX searches
(Nelder and Mead, 1965) were generated us-
ing automatic heuristics. The predicted RT
distributions and response probabilities
from the model, using the maximum likeli-
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hood parameters, closely resembled the data,
for all participants. The parameter estimates B
were then used in the maximum likelihood 388 ]
computation of the single-trial parameter esti- ’gmo 4
mates. To measure how well the STLBA model ~=600
was able to recover single-trial parameter val- ke 500 -
ues for these particular combinations of LBA ;gg ]
parameters, we generated data from the model, 1.0
using the parameter values that were estimated &
for each participant separately. The overlaid © e
crosses in Figure 2 demonstrate that the STLBA & 0.6 1
model recovers response caution particularly S
well for the participants: the overall proportion
of correlations that are stronger than 0.5 is 0.74 150 4
(for drift rate correlations, 0.61; for start point .CE>
correlations, 0.85). This shows that, under the Q100 1
LBA assumptions and for the parameter values E 50 4
estimated from our data, the single-trial esti- «
mates correlate with the true parameters un- 01
derlying the behavior, in particular for the start § bl
point estimates with which we are concerned in = 107
this paper. % 054
ICA. We first decomposed the data using the w 001
group spatial ICA rationale proposed by Cal- % 0.5

houn et al. (2001), which was implemented in
GIFT (http://icatb.sourceforge.net), running
in Matlab (www.mathworks.com). For each
individual separately, the preprocessed fMRI
data were prewhitened and reduced via tempo-
ral principal component analysis (PCA) to 60
components. Then, group-level aggregate data
were generated by concatenating and reducing
individual principal components in a second PCA step. Infomax ICA
(Bell and Sejnowski, 1995) was performed in this set with a model order
of 60 components (Kiviniemi et al., 2009). To estimate robust compo-
nents we used ICASSO (Himberg et al., 2004), i.e., the decomposition
was performed 100 times with random initial conditions, and identified
centroids with a canonical correlation-based clustering. All components
that we interpret in this data set have a robustness index of higher than
0.9. Individual independent component (IC) maps and time courses were
back-reconstructed by multiplying the corresponding data with the re-
spective portions of the estimated demixing matrix. The group average
maps were inspected to identify and discard those ICs primarily associ-
ated with artifacts representing signals from large vessels, ventricles, mo-
tion, and susceptibility (three ICs). From the remaining ICs, only those
that had a cluster extent of at least 27 contiguous voxels and had signifi-
cant random effects ¢ statistics of their maps were considered further
(thresholded at #,4, >5; uncorrected p = 4+ 10 ~°). This uncorrected
threshold equaled or exceeded the threshold estimated for a false discov-
ery rate (FDR) corrected value of p < 0.05 in any of the maps (since FDR
varies somewhat across maps as a function of the distribution of the p
values). Overall, this yielded 30 ICs that were considered in the main

Figure 1.

Trial number

The STLBA model. 4, Evidence for each response alternative that is present in the stimulus differentially determines
the drift rate on a trial. The decision time i the time needed for the fastest accumulator to reach threshold and equals (b — a)/d;.
B, Time series obtained with the STLBA model for one representative participant (top to bottom, response times, drift rates, start
points, HR for a representative IC).

analyses. In the time courses of these ICs, we focused on the frequency
range relevant for event-related hemodynamic responses and filtered
the individual time courses with a 64 s Butterworth high-pass filter.

Single-trial estimate of the hemodynamic response. To obtain single-
trial estimates of the HR amplitudes, we used the method reported by Dan-
ielmeier et al. (2011) and Eichele et al. (2008). For each participant and
component separately, the empirical event-related HRs were deconvolved
by forming the convolution matrix of all trial onsets with a length of 20 s and
multiplying the Moore—Penrose pseudoinverse of this matrix with the fil-
tered and normalized IC time course. Estimation of single-trial amplitudes
was performed in all ICs where consistent event-related activations, i.e., sig-
nificant positive peaks in the hemodynamic response, were present in the
time range of 3—12 s. In this set, single-trial amplitudes were recovered by
fitting a design matrix containing separate predictors for each trial onset
convolved with the estimated HR onto the IC time course, estimating the
scaling coefficients () by using multiple linear regression.

Inference. We computed correlations between single-trial start point
estimates obtained with the STLBA model and the amplitudes of single-
trial HR for each participant. Only those ICs for which the distribution of
correlation coefficients over participants differed from zero were consid-
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Figure 2.  Single-trial values in synthetic data generated with the LBA model correlate with the STLBA single-trial parameter

estimates for a large range of reasonable values (Donkin et al., 2011). The ratio of the two parameters that define the level of
response caution in the LBA model (b/A) are presented on the x-axis. This reflects that in the absence of a scaling parameter, b and
A cantake different values to obtain a particular model fit, but the ratio /A remains constant. The colors code for the ratio between
drift rate v and drift variance s. Analogously to the response caution parameters b and A, the ratio v/s remains constant for a
particular model fit. Noticeable is that the success of the STLBA model depends on where one is in the parameter space. In
particular, for small values of A relative to b, the STLBA model is not able to estimate single-trial drift rates. Similarly, for large values
of v relative to s, the model fails to captures start point variability. In the limit of 5/4 — 0 (or similarly in the limit of v/s —0),
however, this does not pose a problem, since under those conditions all variability in the data is due to drift rate fluctuations (start
point fluctuations). Overlaid crosses represent correlation coefficients under LBA parameter values estimated for the participants in

the experiment. Gray, Speed condition; black, accuracy condition.

ered further (one-sample ¢ test, adjusted p < 0.05). Corrections for mul-
tiple comparisons were made by estimating the proportion of false
positives among the rejected null hypotheses at a cutoff level of 0.1 (Van
der Laan et al., 2005).

Results

We performed a random-dot motion experiment with an SAT
manipulation (for similar manipulations, see Forstmann et al.,
2008, 2010). Participants were cued before each trial whether to
respond fast (“speed stress”) or accurately (“accuracy stress”). If
participants adjust their level of response caution in response to
the specific task instruction (i.e., the cue), then mixing speed-
stress and accuracy-stress trials should maximize the number of
response caution updates.

We applied the STLBA model to the behavioral data of every
participant individually to obtain single-trial start points. Be-
cause the threshold parameter b was fixed over trials, this pro-
vides an index of response caution, with high start point values
indicating low response caution (close to threshold) and vice
versa. For the fMRI data, we used ICA (see Materials and Meth-
ods) to obtain single-trial estimates of the amplitude of the HR
for every component and participant. This analysis yielded 30
spatially separated ICs. To study which ICs code for response
caution fluctuations that are captured by the single-trial start
point estimates, we computed correlations between single-trial
start point estimates and single-trial HR for each IC and each
participant separately. Correlation indicates a systematic rela-
tionship between the start points obtained from the model and
the HR in a particular area, suggesting that that area is involved in
response caution adjustments. We first consider the trials under
speed stress and accuracy stress separately, particularly to study
which areas are involved in response caution under speed stress.
Previous research on the SAT (Forstmann et al. 2008, 2010;
Ivanoff et al., 2008; van Veen et al., 2008) indicates that the fron-

to find correlations between single-trial
start points and HR in ACC for the change
trials, but not for the trials in which there
is no cue-induced need to update the level
of response caution (no change trials).

Table 1 presents MNI coordinates and
approximate regions for the ICs for which
the correlation coefficients significantly
differed from zero (t test, adjusted p <
0.05 after correcting for multiple compar-
isons; see Materials and Methods).

Speed-stressed and accuracy-stressed trials

In line with the SAT manipulation, we first considered all speed-
stressed trials and accuracy-stressed trials separately. In line with
previous research (Forstmann et al. 2008, 2010; Ivanoff et al.,
2008; van Veen et al., 2008), the speed-stressed trials showed
positive correlations between start point estimates and HR for
three components (labeled IC1, IC2, and IC3; Fig. 3). These com-
ponents can be identified as the middle frontal gyrus pars or-
bitalis (IC1) and a component in the pre-SMA and dorsal
anterior cingulate cortex (dACC) that we will refer to as pre-
SMA/dACC (IC2). IC3 comprises the putamen. The pre-SMA
and putamen have been identified previously to be involved in
response caution.

For the accuracy-stressed trials, another area in anterior cin-
gulate cortex (IC4) exhibited a positive correlation between
single-trial start points and HR. We we will refer to this area as
ACC proper. The correlation between IC4 activation and HR is
driven by posterror trials. We found the correlation for trials
following an error (¢ = 3.6, adjusted p < 0.05), but not on the
remaining trials. Because ICA ensures independence of the com-
ponents, IC2 and IC4 comprise different areas, although they are
located close together. Also we found a component in superior
occipital gyrus in which single-trial start point estimates corre-
lated positively with single-trial HR (IC5).

Change and no-change trials

Of particular interest are those trials in which the cue changes
from speed to accuracy or from accuracy to speed. Single-trial
start points for the change trials correlated positively with HR in
IC1 and IC4 (Fig. 3). Based on the hypothesis that we should
observe frontostriatal network activity, we additionally examined
IC3 and found that the correlation was not significant (p = 0.18).
However, there was a significant positive correlation when in-
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Table 1. MNI coordinates, maximum t value, and volume of activated areas of
independent components showing significant correlations of trial-to-trial
fluctuations in single-trial start point

Volume Maxt
IC Region Condition” (mm3)  value® x y z
IC1 MFGorb Speed/change 5814 8.61 30 60 —4
IC2  pre-SMA/dACC ~ Speed/no change 3252 1099 -2 20 30
I3  Putamen Speed/speed and change 313 7.07 30 —12 0
63 707 —16 -2 —14
79 572 —14 4 10
14 ACC Accuracy/change 3306 7.00 2 16 32
463 681 —32 22 -8
162 5.09 0 —16 36
240 508 —26 48 26
I(5 S0G Accuracy 3499 6.26 18 -7 44
3247 569 —22 -—-72 28
IC6  PCun, Ang No change 1232 7.95 0 —60 18

166 7.43 30 —38 —12
983 127 —42 —80 32
M4 7.19 42 —62 24
180 645 —22 14 52

Ang, Angular gyrus; MFG orb, middle frontal gyrus pars orbitalis; PCun, precuneus; SOG, superior occipital gyrus.

“Accuracy, Significant correlation with only accuracy trials included; speed, significant correlation with only speed
trialsincluded; change, significant correlation with only trials included in which response mode changed; no change,
significant correlation with only trials included in which response mode did not change.

®Note that all ICs have a false discovery rate-corrected p value ( p << 0.05) with a cluster extent threshold of at least
27 contiguous voxels.

cluding only the speed change trials (that is, all trials in which the
previous trial was accuracy stressed and the current trial was
speed stressed, p = 0.036). This suggests that change-related ef-
fects are asymmetric; changes from speed stress to accuracy stress
might be different than vice versa, which would be supportive of
a view in which accuracy-stressed settings are the default state
(Forstmann et al., 2008; Fleming et al., 2010).

In addition, in two ICs HR and start point correlated posi-
tively for those trials in which there was no change in the response
regime. These were the pre-SMA/dACC component (IC2) and a
component that covers the part of precuneus that is connected to
angular gyrus (IC6).

These results again suggest involvement of the frontostriatal
network with response caution adjustments, but with a different
role for the ICs in the frontomedian wall (IC2 and IC4) compared
to the previous analysis.

Comparison to response time as a proxy for response caution
The trial-to-trial parameter estimates from the STLBA model are
calculated by simple transformations of the observed RT. How-
ever, the particulars of the transformation are dictated by the
constraint provided by the LBA model, which takes into account
the RT distribution and error proportion. Thus, although the
single-trial estimates are based on more information than the
single-trial RT, one might wonder whether the transformation is
necessary at all; that is, perhaps raw RT might serve as a simpler
proxy for fluctuations in response caution, with high response
caution indicated by slow RT and vice versa. Indeed previous
studies have made this assumption (Gold et al., 2008; Summer-
field and Koechlin, 2010). Therefore, as a control on the STLBA
method, we also computed correlations between raw RT and HR.
If the transformation of RT used in the STLBA model really does
disentangle the effects of start points and drift rates in the accu-
mulation process, then the correlations with these variables
should be more specific than raw RT correlations.

For the change trials, 15 different ICs showed a significant
negative correlation between HR and RT, compared with just
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three ICs when the model parameters were used (Table 2). In
addition, we found 22 significant negative correlations for the
no-change trials, compared with just two ICs when the model
parameters were used. While there is overlap between the ICs in
which the HR correlates with start point and response time, this
analysis clearly illustrates the lack of specificity inherent in using
raw RT as a proxy for response caution. Similar observations can
be made for the other analyses. Overall, 26 of 30 ICs show signif-
icant correlations between HR and RT in one or more of the
subsets of the data that we tested, whereas only six ICs were
significant for the model-based correlations with start point.

Discussion

Here we examined the neural mechanisms that mediate trial-to-
trial fluctuations in response caution. To achieve this, we com-
bined a novel extension of the LBA model that quantifies
moment-to-moment variations in behavior with trial-to-trial
HR measurements. Correlations between single-trial response
caution parameters and single-trial HR estimates revealed a set of
ICs that are involved in dynamically adjusting response caution.
In particular, our study shows that pre-SMA/dACC (IC2) and
ACC proper (IC4) have different functional roles. Pre-SMA/
dACCisinvolved in actively maintaining a lower level of response
caution when speed is at a premium, whereas ACC proper is
involved in switching from one response caution regime to an-
other in either direction. ACC proper seems also to be involved in
response caution setting during accuracy-stressed trials.

These results can be explained by a combination of the striatal
theory and the subthalamic nucleus (STN) theory of response
caution adjustments (Bogacz et al., 2010). The striatal theory
suggests that, with speed emphasis, the striatum receives excit-
atory input from cortical (nonintegrator) neurons, increasing
striatal activity and thus decreasing the inhibitory control of the
basal ganglia over the brain. This process facilitates faster but
possibly premature responses (Forstmann et al., 2008; van Veen
etal., 2008). Forstmann et al. (2008) speculated that the input to
the striatum controlling the SAT could be provided by pre-SMA.
Here we provide supporting evidence for this hypothesis by
showing that pre-SMA/dACC and striatal activity both positively
correlate with trial-to-trial fluctuations in response caution.
However, we found this correlation only for trials under a speed-
stressed regime. One explanation for this might be that pre-SMA/
dACCis involved in actively maintaining a response caution level
that reflects the speed stress. Thus, an accuracy-stressed trial
might be considered the default, and pre-SMA/dACC only en-
gages when the default level of response caution does not suffice
(Fleming et al., 2010). However, based on the present data, this
hypothesis cannot be fully substantiated.

The STN theory proposes that with accuracy emphasis, the
STN receives additional excitatory input from frontal areas
(Frank et al., 2007). Increased STN activity produces slower and
more accurate choices because of the excitatory connections to
the basal ganglia’s output nuclei. Frank et al. (2007) speculated
that the input to STN controlling SAT could be provided by ACC
proper. When response conflict increases, the anterior cingulate
cortex promotes, via the STN, a more careful mode of respond-
ing. The STN theory of corticobasal ganglia functioning is also
supported by our data. We observed that activity in ACC proper
correlated with response caution adjustments, but only when
changing from a liberal response regime to a conservative regime
or vice versa. These trials could be considered more demanding,
because the task instruction on those trials differs from the
instruction on the previous trial (Johnston et al., 2007; Hyafil
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Significant correlations between single-trial start point estimates and HR amplitude. Left, Tukey box plot of correlation coefficients for the speed-stressed trials. The whiskers extend to

1.5X theinterquartile range. On the right-hand side of each panel, individual participants are represented as additional data points, and 95% confidence intervals around each individual correlation
coefficient were obtained through bootstrapping. Middle, ICs in which start points and HR amplitude correlate significantly. Right, Tukey box plot of correlation coefficients for the change trials. Red,

Speed trials; yellow, change trials; blue, both speed and change trials.

et al., 2009). Independent of a change in instruction, ACC
activation also correlated with response caution fluctuations in
accuracy-stressed trials. Similar to fluctuations due to the change
in task instruction, these fluctuations may represent changes
in response caution, perhaps due to events before the current
trial, such as incorrect responses on a previous trial (Botvinick
et al., 2001; Ridderinkhof et al., 2004). This interpretation is
supported by the finding that ACC activation correlates with
response caution on trials following an error, but not on the
remaining trials.

Based on the STN theory, one might expect a negative corre-
lation between STN activity and single-trial start points, reflect-
ing the inhibitory role of the STN on the basal ganglia output
nuclei; in that case, a high start point correlates with less inhibi-
tion from the STN, and a low start point correlates with strong

inhibition from STN. In the current experiment, the spatial res-
olution of the 3T EPI images combined with standard prepro-
cessing and decomposition of the data with ICA does not allow
for a robust extraction of components as small as the STN
(Kiviniemi et al., 2009). Therefore, we used probability maps of
the left and right STN (B.U. Forstmann, M.C. Keuken, S. Jahfari,
P.-L. Bazin, J. Neumann, A. Schifer, A. Anwander, and R.
Turner, unpublished observations) to estimate single-trial HR in
the STN within a general linear model framework. This analysis
could not confirm our hypothesis: the small size of these STN
masks makes it difficult to find correlations with model parame-
ters due to a lack of power, particularly since the model parame-
ters that are correlated with activation are the maximum
likelihood values, which may introduce some additional uncer-
tainty. We speculate that for these reasons, the hypothesis that
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Table 2. MNI coordinates, maximum t value, and volume of activated areas of Table 2. Continued
indepen.dent. components. showing significant correlations of trial-by-trial Volume  Maxt
fluctuations in response time IC Region Condition” (mm3  value® x y z
Volume Maxt
. g 3 b 121 Ang, MTG Change/no change 3417 1.67 58 =36 —12
IC Region Condition (mm°) value” x  y z 333 678 ) 6 38
IC1 MFGorb Speed/change/no change 5814 861 30 60 —4 613 6.65 56 30 2
IC2  pre-SMA/dACC  Speed/change/no change 3252 1099 —2 20 30 100 6.04 —62 —48 34
I3 Putamen Change/no change 33 707 30 —12 0 143 575 44 14 42
63 707 —16 —2 —14 122 PCC No change 185 7.02 0 —-20 32
79 572 —14 4 10 123 Cerebellum  Nochange 4831 24.40 2 —80 —16
4 ACC Change/no change 306 700 2 16 32 |4 [IPL(right)  Nochange 6637 2088 4 —46 48
463 681 —32 2 —8 4117 16.61 50 40 24
794 13.97 6 24 44

162 5.09 0 —16 36

20 508 —26 48 26 ";g; 12;8 _43 :ﬁ gg
IC5 S0G Change/no change 3499 626 18 —72 44 854 7:89 6 —40 —12
247 569 —n =1 B o0 by, No change o N3 2 —3%6 46
IC6  PCun, Ang Speed/change/no change 1232 7.95 0 —60 18 589 921  —28 34 48
166 743 30 —38 —12 0 84 -5 —14 -1
983 727 —42 —80 32 45) 8.39 —40 —16 44
1114 719 42 —62 24 1147 7.40 34 34 50
180 645 —22 14 52 (26 PCun No change 114 6.60 0 46 -6
IC7  Thalamus Change/no change 2032 7.46 4 =16 20 134 646 —60 —38 46
IC8 IFG, MTG No change 5840 874 —34 24 —18 123 6.45 40 —16 36

576 692 —2 12 68 Ang, Angular gyrus; IFG tri, inferior frontal gyrus pars triangularis; 10, inferior occipital cortex; IPL, inferior parietal
391 6.53 52 24 —10 lobule; MFC, middle frontal cortex; MFG orb, middle frontal gyrus pars orbitalis; MTG, medial temporal gyrus; PCun,
196 5.82 62 —30 —6 precuneus, SOG, superior occipital gyrus.
IC9  PCun, MFC Change/no change 1324 9.34 0 —60 28 “Accuracy, Significant correlation with only accuracy trials included; speed, significant correlation with only speed
4288 9.01 0 54 —18 trialsincluded; change, significant correlation with only trials included in which response mode changed; no change,

significant correlation with only trials included in which response mode did not change.
262 699 —66 —16 —16 ®Note that all ICs have a false discovery rate-corrected p value ( p << 0.05) with a cluster extent threshold of at least
436 610 52 —64 26 27 contiguous voxels.
214 6.09 66 —6 —18
IC10 Lingual I0C Speed 3243 1732 22 —100 —10
2165 1601 —24 —94 —20  STN activation and the STLBA start point are negatively corre-
78 676 26 —28 —6 lated cannot be confirmed with the current data set.

ns 633 20 —54 2 The LBA model is a useful descriptive model of choice behav-
IC11 MFCorb Change/no change 523 1189 8 52 =2 jor. Many other models exist that are equally good descriptive
1012 Caudate Change/no change #1779 2 =2 14 models, but are in general less analytically tractable (Vickers,
o789 0 32 2 1970; Ratcliff, 1978; Usher and McClelland, 2001; Ratcliff and
IC13 Motor (left) Change 5929 1537 =30 —24 38 McKoon, 2008; Van Maanen et al., 2009; Van Maanen and Van

2180 1073 56 —20 50
725 9206 —2 —14 52
630 887 20 —52 —22
150 5.92 0 —5% 12

Rijn, 2010). These models could perhaps also have been used to
obtain single-trial parameter estimates. For example, a popular
model of choice response time is the drift diffusion model (Rat-
cliff, 1978; Ratcliff and McKoon, 2008). Contrary to the LBA

IC14 Paracentral Change 5962 899 —4 32 78 . . ..
(14 Paracentral Change 161 708 —4 —48 —14 model, this model assumes that evidence accumulation is sto-
(15 Cerebellum Change/no change 1770 6.81 w4 18 chastic, rather than ballistic as in the LBA model. The stochastic

1687 668 —26 _36 _1g hature of the diffusion model (and others) makes it less suitable

116 PCun No change 699 1846 0 —62 ¢  for single-trial parameter estimation, because it allows for addi-
393 802 28 4 ¢4 tionalnoise within a trial. Nevertheless it is theoretically possible

19 58 -2 —6 6  toquantify trial-to-trial fluctuations as changes in the mean drift

131 574 32 34 44 rate and changes in start point, because, similar to the LBA

IC17 IFGtri No change 2839 913 —56 20 24  model, these parameters are drawn from a normal and a uniform
2181 741 56 22 24 distribution, respectively (Ratcliff and McKoon, 2008).

389 607 40 —62 50 Because the STLBA model infers values for two parameters

418 55 62 —10 —18  from asingle datum (RT), we trade precise but potentially unin-

IC18 SMA No change 9049 912 10 12 56  formative estimates (that is, RT) for less precise but more infor-

204 615 4 —44 14 mative parameter estimates. As Table 2 shows, many of the areas

IC19  Posteentral Change 2543 1316 —40 —16 46  in which HR and RT correlate are not associated with decision

2726 1167 68  —2 14 making at all. For example, RT correlates with activation in left

108 764 —16 —70 —22  primary motor cortex; however, this correlation is typically inter-

1C20 Thalamus, nucleus No change 4131006 14 =22 =2 preted as related to response execution rather than decision mak-
ruber ing. Also, RT correlates with activation in posterior cingulate
cortex (PCC) activation; however, PCC has been implicated pre-
viously in drift rate, rather than response caution (Heekeren et
al., 2004). These examples illustrate that a correlation between

m 7.46 38 4 =8
51 623 —48 —26 4
(Table continued)
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HR and RT is too unspecific to serve as a proxy for fluctuations in
response caution. In contrast, the use of a decision-making
model allows us to quantify latent cognitive processes on a trial-
to-trial basis, thereby disentangling the different processes in-
volved in making a decision.

The transformation from raw RT to the parameter estimates
in the STLBA model is constrained by the parameter distribu-
tions defined in the LBA architecture, making it possible to com-
pute which pairs of latent variables are more likely than others.
This crucially entails that the parameter pairs we estimated are
dependent, whereas we assume independence in the data-
generating model. Although the single-trial parameter estimates
are dependent, we demonstrated that these estimates correlate
with the true values in simulation studies (Fig. 2). This finding
makes the STLBA model a useful tool for computational neuro-
scientists. On the one hand, it specifies a process on the single-
trial level that has been modeled on the RT distribution level. On
the other hand, it provides a new continuous measure of response
caution and trial-to-trial information processing that can be used
to query the functional consequences of fluctuations in event-
related responses.

By studying the trial-to-trial fluctuations in activation in re-
gions involved in strategic adjustments of control, we found that
ACC proper and pre-SMA/dACC code for different forms of
strategic control. Although the mechanisms that perform adjust-
ment of response caution through basal ganglia are the same, the
trigger for these may differ depending on the environmental de-
mands. ACC proper may trigger increased control due to an in-
creased attentional demand, for example, due to a change in
response regime; pre-SMA/dACC activates to obtain less control
and faster responding.
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